CHAPTER-11 THREE DIMENSIONAL GEOMETRY 01 MARK TYPE OUESTIONS

O NO	OUESTION	MARK
1.	If a line makes angles 90° 60° And 130° with the positive	1
	direction of	MARK
	x, y and z axis respectively, then its direction cosines.	
	$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	
	(a)0, $\frac{1}{2}$, $\frac{1}{2}$ (b) 1, $\frac{1}{2}$, $\frac{1}{2}$ (c) 1, $\frac{1}{2}$, $\frac{1}{2}$, (d) 1, $\frac{1}{2}$, $-\frac{1}{2}$	
2.	Two lines with direction ratios a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are parallel if	1
	(a) $\frac{a_1}{a_1} = \frac{b_1}{b_1} = \frac{c_1}{a_1}$ (b) $\frac{a_1}{a_1} = \frac{b_1}{b_1} \neq \frac{c_1}{a_1}$	MARK
	$a^{(1)}_{(1)}a^{(2)}_{(2)}b^{(2)}_{(2)}c^{(2)}_{(2)}a^{(2)}_{(2)}b^{(2)}_{(2)}c^{$	
	(c) $\frac{1}{a^2} \neq \frac{1}{b^2} = \frac{1}{c^2}$ (d) $\frac{1}{a^2} \neq \frac{1}{b^2} \neq \frac{1}{c^2}$	
2	The distance of a naint/ $2 = 7$) from the V puis is	1
5.	The distance of a point(2, 5,7) from the X axis is	
	(a) 2 (b) $\sqrt{74}$ (c) $\sqrt{29}$ (d) $\sqrt{53}$	IVIARK
4.	If the direction cosines of a given line are $\frac{1}{k}$, $\frac{1}{k}$, $\frac{1}{k}$ then the value of k is	
	(a) $\frac{1}{4}$ (b) $+ \frac{1}{4}$ (c) 1 (d) $+ \sqrt{3}$	MARK
	$\gamma_{\sqrt{2}}$ $\gamma_{\sqrt{2}}$ $\gamma_{\sqrt{3}}$ $\gamma_{\sqrt{3}}$ $\gamma_{\sqrt{2}}$	
5.	What are the direction cosines of a line, which makes equal angles with	1
	the coordinate axes.	MARK
	$(2) \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} = (b) \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2}$	
	$(a) \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$ (b) $\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}$	
	(c) $\pm \frac{1}{\sqrt{5}}$, $\pm \frac{1}{\sqrt{5}}$, $\pm \frac{1}{\sqrt{5}}$ (d) $\pm \sqrt{3}$, $\pm \sqrt{3}$	
6.	The equation of y axis in space are	1
	x=0, y=0 (b) $x = 0$, z = 0 (c) y=0, z=0 (d) y =0	MARK
7.	Find the direction cosines of the line	1
	$\frac{4-x}{x} = \frac{y}{x} = \frac{1-z}{x}$	MARK
	$\begin{pmatrix} 2 & 6 & 3 \\ -2 & 6 & -3 \\ -3 & (-) & 2 & 6 & -3 \\ \end{pmatrix}$	
	$(a) \frac{1}{7}, \frac{1}{7$	
0		
δ.	Angle between the lines with direction ratios 2,1,2 and 3,2,-6 is	
	a) $\cos^{-1}(-4)$ (b) $\cos^{-1}\frac{1}{21}$ (c) $\frac{1}{21}$ (d) none of these	MARK
9.	Find the vector equation of a line $\frac{x-1}{1} = \frac{4-y}{2} = \frac{z+1}{2}$	1
	(a) $\vec{x} = \frac{i-4j-k}{k}$ (b) $\frac{i-4j-k}{k}$ (c) $\frac{i+4j+k}{k}$ (d) none of these	MARK
	(a) $r = \frac{1}{\sqrt{14}}$ (b) $\frac{1}{\sqrt{6}}$ (c) $\frac{1}{\sqrt{14}}$ (d) none of these	
10		
10.	Find the vector equation of the line passing through the points A(3,4,-7) and	
	B(1,-1,0).	IVIARK
	(a) $r = 31 + 4$ - /K + μ (-21 - 5] + 13K)	

(c) $\vec{r} = i - 4j - k + \mu(i - 4j - k)$ (d) none of these	
(d) none of these	
11. If a bullet shot from the gun travels a straight line path which makes angles 90°, 60° and 30° with the positive direction of x-axis, y-axis and z-axis respectively, find its direction cosines.	
$(a) \ 1, \frac{\sqrt{3}}{2}, \frac{1}{2} \qquad (b) \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2} \qquad 1$	1
(c) $0, \frac{1}{2}, \frac{1}{2}$ (d) none of these	
12. An electricity straight wire has direction ratios 2,–3, 4, determine its direction cosines.	
(a) 2, -3, 4 (b) 4, -6, 8 (c) $\frac{2}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{4}{\sqrt{29}}$ (d) $\frac{4}{\sqrt{29}}, \frac{-6}{\sqrt{29}}, \frac{8}{\sqrt{29}}$ 1 1	1
13.Three stars in sky are positioned at A (2, -4, 6), B (4, 6, -8) and C (6, 16, -22) with respect to a common reference point O (0, 0, 0). A student is confused whether those three stars are in same line or not. He asks his teacher to help him to solve this problem. Help him to answer this question.1	1
 (a) Three stars are collinear (b) Three stars are not in a same line (c) Only A and B are collinear, not C (d) None of these 	
14. Find the direction ratios of a ray of light passing through the points $(1, 2, 3)$ and $(-1, -3, 3)$. 1 (a) -2, 5, 2 (b) -2, -5, 2 (c) -2, -5, 8 (d) 2, -5, 8	1
15. What are direction ratios of the line $\vec{r} = (3\hat{\imath} + 4\hat{\jmath} - 5\hat{k}) + m(0\hat{\imath} + 7\hat{\jmath} + 3\hat{k})?$ (a) 3, 4, -5 (b) -3, -4, 5 (c) 3, 11, -2 (d) 0, 7, 3	1
16. What are the direction cosines of the line having direction ratios 0, -3, 4? 1 (a) $0, -3, 4$ (b) $0, -8, 10$ 1 (c) $0, 3/5, 4/5$ (d) $0, -3/5, 4/5$ 1	1
17. Find the Cartesian equation of a line parallel to y-axis and passing through the point (1, -2, 7) (a) $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-7}{7}$ (b) $\frac{x-1}{1} = \frac{y+2}{0} = \frac{z-7}{1}$ (c) $\frac{x+1}{1} = \frac{y-2}{-2} = 1$	1
$\frac{7}{7} \qquad (d) \frac{1}{0} = \frac{z}{1} = \frac{z}{0}$ 18. Write down the vector form of the following equation of line $\frac{x-6}{2} = \frac{y-4}{1} = \frac{z-1}{-3}$	
$(a) \vec{r} = (6\hat{i} + 4\hat{j} + 1\hat{k}) + \alpha (2\hat{i} + \hat{j} - 3\hat{k}) (b) \vec{r} = (2\hat{i} + \hat{j} - 3\hat{k}) + \alpha (6\hat{i} + 4\hat{j} + 1\hat{k}) (c) \vec{r} = (-2\hat{i} - \hat{j} + 3\hat{k}) + \alpha (6\hat{i} + 4\hat{j} + 1\hat{k}) (d) \vec{r} = (-6\hat{i} - 4\hat{i} - 1\hat{k}) + \alpha (2\hat{i} + \hat{i} - 3\hat{k})$ (1)	1
$(\omega) = (0 i - j - i i j + i i (\omega i + j - i i i j))$	1

	+ cr $=$ 0.	
	(a) Demallel (b) Demandicular	
	(a) Parallel (b) Perpendicular (c) coincident (d) Skew	
20.	For what value of p, given two lines are parallel?	
	$\frac{x-1}{x-1} = \frac{y+2}{x-1} = \frac{z-7}{x-1}$ and $\frac{x-8}{x-1} = \frac{y-2}{x-1} = \frac{z+2}{x-1}$	
	1 - 2 - 7 and $2 - p - 14$	1
	(a) $n = 2$ (b) $n = 4$	-
	(a) $p = -2$ (b) $p = -4$ (c) $p = -4$ (d) can't be determined	
21.	P is a point on the line joining the points A (1,5,-2) and B (3,-1,2). If the X co-ordinates of P	1
	is 5, then its Y co-ordinate is	
	-5 (b) -6 (c) -7 (d) -8	
22.	The sum of the direction cosines of X-axis is	1
	(a) 0 (b) 1 (c) 2 (d) 3	
23.	The cartesian equation of a line is given by $3x-1$ $y+2$ $z-3$	1
	$\frac{1}{\sqrt{3}} = \frac{1}{2} = \frac{1}{3}$, the direction cosines of the line is	
	(a) $\frac{\sqrt{3}}{2\sqrt{30}}, \frac{3}{\sqrt{30}}, \frac{9}{2\sqrt{30}}$ (b) $\frac{\sqrt{3}}{2\sqrt{30}}, \frac{\sqrt{5}}{2\sqrt{30}}, \frac{\sqrt{3}}{\sqrt{30}}$ (c) $\frac{\sqrt{3}}{2\sqrt{30}}, \frac{3}{2\sqrt{30}}, \frac{9}{2\sqrt{30}}$	
	(d) $\frac{\sqrt{3}}{\sqrt{3}}$, $\frac{\sqrt{3}}{\sqrt{3}}$, $\frac{\sqrt{5}}{\sqrt{3}}$	
	$(2\sqrt{30}, 2\sqrt{30}, 2\sqrt{30}, 2\sqrt{30})$	
24	The point where the line joining the points (2.5.4) and (1.2.6) meets VZ, plane	1
24.	The point where the line joining the points (2,3,4) and (1,3,0) meets 12- plane	1
	(a)(0.2.7) (b) $(0.3.8)$ (c) $(1.2.8)$ (d) $(0.1.8)$	
25.	Assertion (A) : Let P be a point on the line joining the pints A(1,5,-4) and B(4,-2,1). If X-co-	1
	ordinate of P is 3. then its Y co-ordinate is $\frac{1}{2}$.	
	Beason (B): The equation of line passing through two points A (x_1 y_1 z_1) and B (x_2 y_2 z_2) is	
	given by	
	$(x-x_1)/(x_2-x_1) = (y-y_1)/(y_2-y_1) = (z-z_1)/(z_2-z_1).$	
	(a)Both A and R are true and R is the correct explanation of A .	
	(b) Both A and R are true but R is not the correct explanation of A	
	(c) A is true but R is false	
26	(d)A is false but R is true.	
26.	If a line makes an angle α , β , γ with X-axis, γ – axis and Z – axis respectively, then $\cos 2\alpha$ +	T
	(a) 1 (b) -1 (c) 0 (d) 2	
27.	The co-ordinates of the point where the line $\frac{x+4}{z} = \frac{y-3}{z} = \frac{z-5}{z}$	1
	$\frac{1}{4}$ $\frac{1}{-3}$ $\frac{1}{-5}$	
	(a) $(0.0.0)$ (b) $(1.1.1)$ (c) $(2.2.2)$ (d) $(3.3.3)$	

28.		1
	A car race was organized in a town, where the maximum speed limit was set by organizers . No participants are allowed to cross the specified limit, but two cars A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \lambda (\hat{i} + 2\hat{j} - \hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} + \mu (2\hat{i} + \hat{j} + \hat{k})$ respectively. The cartesian equation of the line along which motorcycle A is running	
	(a) $\frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$ (b) $\frac{zx}{1} = \frac{y}{3} = \frac{z}{-1}$ (c) $\frac{x}{1} = \frac{y}{2}$ $= \frac{3z}{-1}$ (d) $\frac{x}{1} = \frac{y}{3} = \frac{z}{-1}$	
29.	The equation of motion of a missile are x = 3t , y = -4t , z = 2t, where the time t is given in	1
	the seconds and the distance is measured in kilometers. Which of the following points lie on the path of the missile at $t = 3$ s. (a)(6,8,12) (b) (9,-12,6) (c)(5,10, 15) (d) (5,10, -15)	
30.	If the direction cosines of a line are k,k,k then (a) k>0 (b) $0 < k < 1$ (c) k = 1 (d) k = $\pm \frac{1}{\sqrt{3}}$	1
31.	What is the value of $l^2 + m^2 + n^2$?	1
32.	If equation of a straight line in space is : $\frac{x-3}{2} = \frac{y+1}{3} = \frac{z}{2\sqrt{3}}$ What are its direction cosines.	1
33.	If equations of two straight lines in space are : $\frac{x-3}{2} = \frac{y+1}{3} = \frac{z}{2\sqrt{3}}$ and $\frac{x+1}{1} = \frac{y-2}{2} = \frac{z+2}{2}$, find the angle between these two lines.	1
34.	Show that the line through the points $(4, 7, 8)$, $(2, 3, 4)$ is parallel to the line through the points $(-1, -2, 1)$, $(1, 2, 5)$.	1
35.	The Cartesian equation of a line is $\frac{x+5}{4} = \frac{y-1}{3} = \frac{z-2}{1}$, write it in vector form.	1

1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1
1
1
1
1 -
1
1
1
1
1
1
1
1
1
1

Q. NO	ANSWER	MARKS
1.	a) 0, $\frac{1}{2}$, $\frac{\sqrt{3}}{2}$	1
2.	a) $\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$	1
3.	(b) $\sqrt{74}$	1
4.	(d) $\pm \sqrt{3}$	1
5.	$(a) \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$	1
6.	(b) $x = 0$, $z = 0$	1
7.	(a) $\frac{-2}{7}$, $\frac{6}{7}$, $\frac{-3}{7}$	1
8.	(b) $\cos^{-1}\frac{-4}{24}$	1
9.	a) $\vec{r} = \frac{i - 4j - k}{\sqrt{14}}$	1
10.	(a) $\vec{r} = 3i + 4j - 7k + \mu(-2i - 5j + 13k)$	1
11.	(c)	1
12.	(c)	1
13.	(a)	1
14.	(b)	1
15.	(d)	1
16.	(d)	1
17.	(d)	1
18.	(a)	1
19.	(b)	1
20.	(c)	1
21.	с	1
22.	b	1
23.	a	1
24.	d	1
25.	a	1
26.	b	1
27.	a	1
28.	a	1
29.	b	1
30.	d	1
31.	1	1
32.	$l = \frac{2}{r}, m = \frac{3}{r}, n = \frac{2\sqrt{3}}{r}$	1
33.	$\frac{5}{\cos^{-1}} \frac{8+4\sqrt{3}}{15}$	1
34.	Direction ratios of both the lines are : (2, 4, 4). Hence, $\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{c_1}{a_2}$.	1
35.	$\vec{r} = (-5\hat{\imath} + \hat{\jmath} + 2\hat{k}) + \alpha(4\hat{\imath} + 3\hat{\jmath} + \hat{k})$	1
36.	Direction ratios of the lines are: $\left(-3\frac{2p}{2},2\right)$ & (2,7,5) and $-3\times2+\frac{2p}{2}\times7+$	1
	$2 \times E = 0$	
	$4 \times 3 = 0$ So that $n = -2$	
1	1 SO mat, $p = 2$	

ANSWERS:

37.	$(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$	1
38.	Here, $l = m = n$ so that, $l^2 + m^2 + n^2 = 1 \implies l = m = n = \frac{1}{\sqrt{3}}$	1
39.	The direction – cosines of x, y, and $z - axis$ are : $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ respectively.	1
40.	Vector equation is : $\vec{r} = 5\hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(3\hat{\imath} + 2\hat{\jmath} - 8\hat{k})$. Cartesian equation is : $\frac{x-5}{3} = \frac{y-2}{2} = \frac{z+4}{-8}$	1
41.	(b)y = 0, z = 0	1
42.	As	1
43.	As $3 \times \frac{k^2}{9} = 1$ $k = \pm \sqrt{3}$	1
44.	$\Rightarrow \alpha + \beta + \sin^2 \gamma$	1
45.	$\Rightarrow 2\alpha + \beta + \cos 2\gamma + 1 = 0$	1
46.	Dc's are 0,0,1	1
47.	We got dc's $\frac{2}{7}, \frac{6}{7}, \frac{3}{7}$	1
48.	(a.) (1,1, -1	1
49.	(b.) √74	1
50.	c. (0, 1, 0)	1

CHAPTER-11 THREE DIMENSIONAL GEOMETRY 02 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Find the distance between the two planes: $2x+3y+4z=4$ and $4x+6y+8z=12$	2
2.	Show that the planes: 2x-y+4z=5 and 5x-2.5y+10z=6 are parallel.	2
3.	Find the angle between the planes whose vector equations are \vec{r} .(2 i + 2j - 3k)=5 and \vec{r} .(3 i - 3j + 5k)=3	2
4.	If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular ,find the value of k.	2
5.	Find the foot of perpendicular drawn from the point (4,2,3) to the line joining (1,-2,3) and (1,1,0).	2
6.	Check whether the given two lines are coincident, skew, parallel or perpendicular? $\vec{r} = (6\hat{\imath} + 4\hat{\jmath} + 1\hat{k}) + \beta (2\hat{\imath} + \hat{\jmath} - 3\hat{k})$ $\vec{r} = (-2\hat{\imath} - \hat{\jmath} + 3\hat{k}) + \alpha (6\hat{\imath} + 3\hat{\jmath} - 9\hat{k})$	2
7.	Find the direction cosines of the sides of the triangle with vertices A (1, 3, 5), B (2, 5, 7) and C (-1, -4, 3)	2
8.	Show that the line passing through two points $(2, 3, 5)$ and $(5, 6, 8)$ is parallel to the line through the points $(1, 6, -5)$ and $(4, 9, -2)$.	2
9.	Find the angle between the pair of lines: $\vec{r} = (8\hat{\imath} + 4\hat{\jmath} + 9\hat{k}) + \beta (2\hat{\imath} + \hat{\jmath} - 3\hat{k})$ $\vec{r} = (7\hat{\imath} - 3\hat{\jmath} + 1\hat{k}) + \alpha (6\hat{\imath} + 3\hat{\jmath} - 9\hat{k})$	2
10.	Find the value of 'm' so that the given lines are perpendicular. $\frac{-x+1}{1} = \frac{y+2}{2} = \frac{z-7}{4} \text{ and } \frac{x-8}{2} = \frac{y-2}{m} = \frac{z+2}{6}$	2
11.	Find the acute angle which the line with direction cosines $1/\sqrt{2}$, ½, n makes with positive direction of Z-axis.	2
12.	Find the direction cosine of a line equally inclined to the three co-ordinate axes.	2
13.	The cartesian equation of motion of a rocket is $\frac{x-2}{5} = \frac{y+4}{7} = \frac{6-z}{2}$	2

	Write the vector equation of the line.	
14.	An insect is crawling along the line passing through two points (-2,-3,4) and (2,-1,3). Find the direction cosine of the line of an insect.	2
15.	If the x-co-ordinate of a point P on the join of Q (2,2,1) and R (5,1,-2) is 3 then find its y – co-ordinate.	2
16.	Show that the lines given by $\frac{x-5}{2} = \frac{2y+5}{4} = \frac{3z+8}{5}$ and $\frac{3-x}{1} = \frac{y-2}{2} = \frac{8-5z}{6}$	2
17.	Find the angle between the lines whose direction ratios are (a, b, c) and $(b - c, c - a, a - b)$.	2
18.	Find the equation of a line parallel to $x - axis$ and passing through the point P (1, 2, 3).	2
19.	Find equation of a line passing through points P $(3, 4, -1)$ and Q $(-2, 0, 4)$.	2
20.	Find the angle between the lines joining the points A $(1, -2, 3)$, B $(2, -1, 1)$ and C $(0, -2, 2)$, D $(0, 3, 4)$	2
21.	Find the vector equation of the line $\frac{x-5}{2} = \frac{y-5}{2} = \frac{z+1}{5}$ cuts YZ-plane.	2
22.	A line makes angles 60° and 45° with the x and y axes respectively, find the angle which it makes with the z-axis	2
23.	Find the direction cosines of the line passing through the following points: (-2,4, -5), (1,2,3)	2
24.	What are the direction cosines of a line, which makes equal angles with the coordinate axes?	2
25.	Write the equation of the line x-1 = 2y = 3z in vector form	2

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$\frac{2}{\sqrt{29}}$ units	
2.	$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ for parallel condition	
3.	15	
	$\cos \frac{1}{\sqrt{731}}$	
4.	$k = \frac{-10}{7}$	
5.	(1,0,1)	
6.	These are parallel lines because their direction ratios are proportional.	2
7.	Direction cosines of AB are: $\frac{1}{2}, \frac{2}{2}, \frac{2}{2}$	2
	Direction cosines of BC are: $\frac{3}{-3}$, $\frac{3}{-9}$, $\frac{-9}{(125)}$, $\frac{-4}{(125)}$	
	Direction cosines of CA are: $\frac{2}{7}$ $\frac{7}{2}$	
0	Direction rotios of 1^{st} line: 2, 2, 3	2
ō.	Direction ratios of 2 nd line: 3, 3, 3	2
	Since direction ratios of both lines are same/ proportional, hence the lines are parallel.	
9.	These are parallel lines because their direction ratios are proportional. So, angle	2
	between the given lines is 0°	
10.	m = -11, using condition of perpendicularity i.e. sum of product of direction ratios of two perpendicular lines is zero	2
11.	$l^2 + m^2 + n^2 = 1$	2
	$(1/2)^2 + (1/\sqrt{2})^2 + n^2 = 1$	
	$\frac{1}{4} + \frac{1}{2} + n^2 = 1$	
	$n^2 = 1-3/4$	
	$n^2 = \frac{1}{4}$	
	n = 1/	
	$r_{1} = \frac{1}{2}$ $r_{2} = \frac{1}{2} = r_{2} = r_{2} = r_{2} = r_{2} = r_{2}$	
	$\gamma = 60^{\circ}$	
12.	Let direction cosine of a line equally inclined to co-ordinate axes are I,I,I	2
	So, $ ^2 + ^2 + ^2 = 1$	
	$Or, 3 ^2 = 1$ $Or, ^2 = 1/3$	
	$Or = +\frac{1}{2}$	
	So, Direction cosines are $\pm \frac{1}{2}$, $\pm \frac{1}{2}$	
13	The cartesian equation of motion of a rocket is	2
15.	$\frac{x-2}{y+4} = \frac{6-z}{6-z}$	2
	5 - 7 - 2 5 - 7 - 2 x - 2 - 6	
	$Or, \frac{1}{5} = \frac{1}{7} = \frac{1}{-2}$	
	i ne standard form of line of equation is $(x - x_0)/2 = (y_0y_0)/b = (y_0y_0)/c$	
	$x = x_1/a = (y-y_1)/b = (z-z_1)/c$ By comparing Point is (24.6) and direction ratios are (5.72)	
	So, vector equation of motion of rocket	
	$\vec{r} = 2\hat{\imath} - 4\hat{\jmath} + 6\hat{k} + \lambda(5\hat{\imath} + 7\hat{\jmath} - 2\hat{k})$	

14.	Let line passing through two points P (-2,-3,4) and Q(2,-1,3)	2
	$PQ = \sqrt{16} + 4 + 1 = \sqrt{21}$	
	So, Direction cosines of the line joining two points are $\frac{1}{\sqrt{21}}$, $\frac{1}{\sqrt{21}}$, $\frac{1}{\sqrt{21}}$	
	$=\frac{4}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{-1}{\sqrt{21}}$	
15.	Let P divides QR in the ratio λ :1	2
	Co-ordinates of P are $\left(\frac{5\lambda+2}{\lambda+1}, \frac{\lambda+2}{\lambda+1}, \frac{-2\lambda+1}{\lambda+1}\right)$	
	x - co-ordinate of P = 3	
	So, $\frac{5\lambda+2}{\lambda+1} = 3$	
	$Or, 5\lambda + 2 = 3\lambda + 3$	
	Or, $\lambda = \frac{1}{2}$	
	So, y – co-ordinate of P = $\frac{\frac{1}{2}+2}{1}$ = 5/3	
	$\frac{1}{2}$ +1	
16.	$x-5$ $y+\frac{5}{2}$ $z+\frac{8}{2}$	1
	Equations of lines can be written in standard form as : $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ and	
	$\frac{x-3}{2} - \frac{y-2}{2} - \frac{z-\frac{8}{5}}{5}$	
	-1 $-\frac{1}{2}$ $-\frac{-6}{5}$	
	So that Direction ratios of the lines are : $(2, 2, \frac{5}{3}) \& (-1, 2, \frac{-6}{5})$ and $2 \times (-1) +$	1
	$2 \times 2 + \frac{5}{3} \times \left(\frac{-6}{5}\right) = 0.$	
17.	Here, $a \times (b - c) + b \times (c - a) + c \times (a - b)$	1
	= ab - ac + bc - ba + ca - cb = 0	1
18	So that lines are perpendicular. Direction – cosines of x – axis are given by (1,0,0)	1
10.	So that the equation of line passing through the point P (1, 2, 3) and parallel to $x - x^2$	1
	axis is given by $\frac{x-1}{x-1} = \frac{y-2}{x-1} = \frac{z-3}{x-3}$.	1
19.	The direction ratios of the line passing through points P $(3, 4, -1)$ and Q $(-2, 0, 4)$	1
	are :	
	(5, 4, -5).	1
	So that its equation can be given as $\frac{-5}{5} = \frac{5}{4} = \frac{-5}{-5}$.	
20.	Direction ratios of the line joining the points A $(1, -2, 3)$, B $(2, -1, 1)$ is given by	
	(2 - 1, -1 + 2, 1 - 3) = (1, 1, -2) Direction ratios of the line joining the points C (0 -2, 2) D (0, 3, 4) is given by	
	(0, 3 + 2, 4 - 2) = (0, 5, 2).	1
	Therefore, angle between the lines is given by	
	$\cos \theta = \frac{1 \times 0 + 1 \times 5 - 2 \times 2}{\sqrt{1 + 1 + 4} \times \sqrt{0 + 25 + 4}} = \frac{1}{\sqrt{174}}.$	1
21.	$\vec{h} - \vec{a} + \lambda \vec{h} \rightarrow \vec{r} - (5i^2 - 4i^2 + 6k^2 + \lambda(2i^2 + 7i^2 - 2k))$	2
22.	$\frac{b - u + \lambda b \rightarrow i - (3i + j + 0k + \lambda (3i + i j - 2k))}{v = 60^{\circ} \text{ or } 120^{\circ}}$	2
23.	$\begin{array}{c} 3 \\ -2 \\ 8 \end{array}$	2
	Dc's are: $\frac{1}{\sqrt{77}}, \frac{1}{\sqrt{77}}, \frac{1}{\sqrt{77}}$	<u> </u>
24.	Dc's are: $\pm \frac{1}{\sqrt{3}} \pm \frac{1}{\sqrt{3}} \pm \frac{1}{\sqrt{3}}$	2
25.	$\vec{r} = (i^{+} + 0j^{+} + 0k^{+}) + \lambda(6i^{+} + 3j^{+} + 2k^{+})$	2

CHAPTER-11

THREE DIMENSIONAL GEOMETRY 03 MARKS TYPE OUESTIONS

1.Find the distance of a point (2,4,-1) from the line3 $\frac{x+5}{1} = \frac{y+3}{2} = \frac{x-6}{-9}$ 32.Find the shortest distance between the lines3 $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \mu(\mathbf{2i} + \mathbf{j} + \mathbf{2k})$ 33.Find the sourcest distance between the following lines: $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + \alpha(4\mathbf{i} + 6\mathbf{j} + 12\mathbf{k})$ 4.Find the shortest distance between the following lines: $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + \alpha(4\mathbf{i} + 6\mathbf{j} + 12\mathbf{k})$ 5.Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + \alpha(\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$ 6.Find the angle between the pair of lines: $\vec{r} = (10\mathbf{i} - 4\mathbf{j}) + 8(\mathbf{k}) + \gamma(2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k})$ $\vec{r} = (10\mathbf{i} - 4\mathbf{j}) + 8(\mathbf{k} + 4\mathbf{j} + 12\mathbf{k})$ 7. aaa 7. abaaaaaaaaabababbccbabacacaaababa <th>O NO</th> <th>OUESTION</th> <th>MARK</th>	O NO	OUESTION	MARK
2.Find the shortest distance between the lines3 $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (2 \mathbf{i} - \mathbf{j} - \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ 3.Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively.4.Find the shortest distance between the following lines: $\vec{r} = (2i + 4j - 8k) + \beta(2i + 3j + 6k)$ $\vec{r} = (i - 2j - 4k) + \alpha(4i + 6j + 12k)$ 5.Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2i + 4j - 8k) + \beta(2i + 3j + 6k)$ $\vec{r} = (i - 2j - 4k) + \alpha(i + 2j + 4k)$ 6.Find the angle between the pair of lines: $\vec{r} = (6i + 4j - 8k) + \gamma(2i + 4j + 4k)$ $\vec{r} = (10i - 4j) + \delta(6i + 4j + 12k)$ 7.Image: Comparison of the plane with the plane on the basis of the same. A cycle race was organized in a town, where the maximum speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = i + j - k + \lambda (i + 2j - 2k)$ and $\vec{r} = i + 2j + 2k + \mu (2i + j + k)$ 8.Model between two lines.	1.	Find the distance of a point (2,4,-1) from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$	3
3.Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively.34.Find the shortest distance between the following lines: $\vec{r} = (2\hat{i} + 4\hat{j} - 8\hat{k}) + \beta (2\hat{i} + 3\hat{j} + 6\hat{k})$ $\vec{r} = (\hat{i} - 2\hat{j} - 4\hat{k}) + \alpha (4\hat{i} + 6\hat{j} + 12\hat{k})$ 35.Find the shortest distance between the following lines whose vector equation are given: 	2.	Find the shortest distance between the lines $\vec{r} = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \gamma (\mathbf{i} - \mathbf{j} + \mathbf{k})$ and $\vec{r} = (2\mathbf{i} - \mathbf{j} - \mathbf{k}) + \mu (2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$	3
4.Find the shortest distance between the following lines: $\vec{r} = (2\hat{i} + 4\hat{j} - 8\hat{k}) + \beta (2\hat{i} + 3\hat{j} + 6\hat{k})$ $\vec{r} = (\hat{i} - 2\hat{j} - 4\hat{k}) + \alpha (4\hat{i} + 6\hat{j} + 12\hat{k})$ 35.Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2\hat{i} + 4\hat{j} - 8\hat{k}) + \beta (2\hat{i} + 3\hat{j} + 6\hat{k})$ $\vec{r} = (\hat{i} - 2\hat{j} - 4\hat{k}) + \alpha (\hat{i} + 2\hat{j} + 4\hat{k})$ 36.Find the angle between the pair of lines: $\vec{r} = (6\hat{i} + 4\hat{j} - 8\hat{k}) + \gamma (2\hat{i} + 4\hat{j} + 4\hat{k})$ $\vec{r} = (10\hat{i} - 4\hat{j}) + \delta (\hat{6}\hat{i} + 4\hat{j} + 12\hat{k})$ 37.Image: Constrained answer the question on the basis of the same. 	3.	Find the equation of the plane with intercepts 2,3 and 4 on the x,y and z axis respectively.	3
5.Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2\hat{i} + 4\hat{j} - 8\hat{k}) + \beta (2\hat{i} + 3\hat{j} + 6\hat{k})$ $\vec{r} = (\hat{i} - 2\hat{j} - 4\hat{k}) + \alpha (\hat{i} + 2\hat{j} + 4\hat{k})$ 36.Find the angle between the pair of lines: $\vec{r} = (6\hat{c} + 4\hat{j} - 8\hat{k}) + \gamma (2\hat{i} + 4\hat{j} + 4\hat{k})$ $\vec{r} = (10\hat{i} - 4\hat{j}) + \delta (\hat{6}\hat{i} + 4\hat{j} + 12\hat{k})$ 37. SolutionSolutionRead the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (\hat{i} + 2\hat{j} - 2\hat{k})$ and $\vec{r} = \hat{i} + 2\hat{j} + 2k + \mu (2\hat{i} + \hat{j} + \hat{k})$ Find the angle between two lines.38. SolutionSolution	4.	Find the shortest distance between the following lines: $\vec{r} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \beta (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - 4\hat{k}) + \alpha (4\hat{\imath} + 6\hat{\jmath} + 12\hat{k})$	3
6.Find the angle between the pair of lines: $\vec{r} = (6\hat{\iota} + 4\hat{j} - 8\hat{k}) + \gamma (2\hat{\iota} + 4\hat{j} + 4\hat{k})$ $\vec{r} = (10\hat{\iota} - 4\hat{j}) + \delta (\hat{6}\hat{\iota} + 4\hat{j} + 12\hat{k})$ 37. 3 7. 3 Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\iota} + \hat{j} - \hat{k} + \lambda (\hat{\iota} + 2\hat{j} - 2\hat{k})$ 	5.	Find the shortest distance between the following lines whose vector equation are given: $\vec{r} = (2\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \beta (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - 4\hat{k}) + \alpha (\hat{\imath} + 2\hat{\jmath} + 4\hat{k})$	3
7.3Read the following text and answer the question on the basis of the same. A cycle race was organized in a town , where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two cycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{\iota} + \hat{j} - \hat{k} + \lambda (\hat{\iota} + 2\hat{j} - 2\hat{k})$ and $\vec{r} = \hat{\iota} + 2\hat{j} + 2k + \mu (2\hat{\iota} + \hat{j} + \hat{k})$ 38.3	6.	Find the angle between the pair of lines: $\vec{r} = (6\hat{\imath} + 4\hat{\jmath} - 8\hat{k}) + \gamma (2\hat{\imath} + 4\hat{\jmath} + 4\hat{k})$ $\vec{r} = (10\hat{\imath} - 4\hat{\jmath}) + \delta (\hat{6}\hat{\imath} + 4\hat{\jmath} + 12\hat{k})$	3
8. 3	7.	$\label{eq:rescaled} \begin{aligned} & \ensuremath{F}\xspace{1.5} \\ & \ensuremath{R}\xspace{1.5} \\ & \mathsf{$	3
	8.		3

	An insect is crawling along the line $\frac{1-x}{3p} = \frac{7y-14}{1} = \frac{5z-10}{11}$ and another insect is crawling along the line $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$. Find the value of p so that the lines are perpendicular to each other.	
9.	An insect is crawling along the line which passes through the point (-2,4,-5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ then find the cartesian equation of of the line.	3
10.	Find the distance of the point P (-2, 4, -5) from the line x+3 $y-4$ $z+8$	3
	$\frac{1}{3} = \frac{1}{5} = \frac{1}{6}$.	
11.	Find the co-ordinates of the foot of perpendicular drawn from the point A $(1, 8, 4)$ to the line joining the points B $(0, -1, 3)$ and C $(2, -3, -1)$.	3
12.	Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.	3
13.	Find the point on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of $3\sqrt{2}$ from the point (1,2,3).	3
14.	Find the point on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of 5 units from the point P (1,3,3).	3
15.	Show that the lines $\frac{5-x}{-4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{2y-8}{2} = \frac{2-5}{3}$ are coplanar.	3

ANSWERS:

Q. NO	ANSWER	MARKS
1.	7 units	
2.	$\frac{3\sqrt{2}}{2}$	
3.	$\frac{x}{2} + \frac{y}{2} + \frac{z}{4} = 1$	
4.	Since, the given lines are parallel as their direction ratios are proportional, so shortest	3
	distance between these lines is given by;	
	$d = \left \frac{b \hat{x} (\overline{a_2} - \overline{a_1})}{ \vec{b} } \right , \text{ where } \vec{a_1} = (2\hat{\iota} + 4\hat{j} - 8\hat{k})$	
	$\overrightarrow{a_2} = (\hat{\imath} - 2\hat{j} - 4\hat{k})$	
	$\vec{b} = (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $d = \frac{\sqrt{2581}}{7}$	
5.	Since, the given lines are not parallel as their direction ratios are not proportional, so	3
	shortest distance between these lines is given by;	
	$d = \left \frac{(b_1 \times b_2) \cdot (a_2 - a_1)}{ \overline{b_1} \times \overline{b_2} } \right , \text{ where } \overline{a_1} = (2\hat{\iota} + 4\hat{j} - 8\hat{k})$	
	$\overrightarrow{a_2} = (\hat{i} - 2\hat{j} - 4\hat{k})$	
	$\overrightarrow{b_1} = (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$	
	$\overrightarrow{b_2} = (\hat{\iota} + 2\hat{j} + 4\hat{k})$	
	$d = \frac{16}{\sqrt{5}}$	
6.	The angle between the two given lines is given by:	3
	$\theta = \left \frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{ b_1 b_2 } \right $, where $\overrightarrow{b_1} = (2\hat{\iota} + 4\hat{j} + 4\hat{k})$	
	$\overrightarrow{b_2} = (\widehat{6i} + 4\hat{i} + 12\hat{k})$	
	$\theta = \cos^{-1}\frac{19}{21}$	
7.	$b_1 = (\hat{i} + 2\hat{j} - 2\hat{k})$	3
	and $b_2 = (2\hat{i} + \hat{j} + \hat{k})$	
	$b_1 \cdot b_2 = (\hat{i} + 2\hat{j} - 2\hat{k}) \cdot (2\hat{i} + \hat{j} + \hat{k})$	
	= 2+2-2	
	= 2	
	$1 D_1 = \sqrt{1 + 4 + 4} = 3$	
	$1521 - \sqrt{4} + 1 + 1 - \sqrt{6}$	
	So $\theta = \cos^{-1}(2/3\sqrt{6})$	
8.	The given lines $\frac{1-x}{x} = \frac{7y-14}{z^2-14} = \frac{5z-10}{z^2-14}$ and $\frac{7-7x}{z^2-14} = \frac{y-5}{z^2-14} = \frac{6-z}{z^2-14}$	3
	$OR \frac{x-1}{2} = \frac{y-2}{2} = \frac{z-2}{2} \text{ and } \frac{x-1}{2} = \frac{y-5}{2} = \frac{z-6}{2}$	
	$-3 = \frac{2p}{7} = \frac{11}{5} = \frac{-3p}{7} = \frac{-5}{1}$	
	As the lines are perpendicular	
	So, $-3 \times -3p/7 + 2p/7 \times 1 + 11/5 \times (-5) = 0$	
	9p/7 + 2p/7 - 11 = 0	
	11p -77 = 0	
	11 p = 77	
	So, $p = 7$.	
9.	The equation of given line is $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+3}{6}$	3

	Direction ratios of the line are 3,5 and 6	
	Now, the equation of the line passing through point (-2,4,5) and having direction	
	ratios 3,5,6 is $\frac{x+2}{2} = \frac{y-4}{5} = \frac{z+5}{5}$	
	3 5 6	
10.	Any general point on the line $\frac{x+3}{x+3} - \frac{y-4}{x+3} - \frac{z+8}{x+3}$ (1)	
	Any general point on the line $\frac{3}{3} = \frac{5}{5} = \frac{6}{6}$ (1)	
	Is given by Q $(-3 + 3\lambda, 4 + 5\lambda, -8 + 6\lambda)$ (2) If this point Q is to be fact of the permendicular drawn to the line (1) from the point	
	P(-2, 4, -5) then	
	Direction ratios of line \overrightarrow{PQ} are given by $(3) - 3 + 25 + 4 - 46 - 8 + 5) - 100$	
	$(3\lambda - 1.5\lambda, 6\lambda - 3)$	1
	Now as \overline{PO} is perpendicular to the line (1) hence we have	
	$3.(3\lambda - 1) + 5.(5\lambda) + 6.(6\lambda - 3) = 0$	
	$\Rightarrow 70\lambda - 21 = 0 \Rightarrow \lambda = \frac{1}{70} = \frac{1}{10}$	1
	Hence, $\overrightarrow{PQ} = \left(-1 + \frac{9}{10}\right)\hat{i} + \frac{15}{10}\hat{j}\left(-3 + \frac{18}{10}\right)\hat{k} = \frac{1}{10}\hat{i} + \frac{15}{10}\hat{j} - \frac{12}{10}\hat{k}$	
	$ \overline{10} = 10^{-10} \overline{10} = 1$	1
	Therefore, $ PQ = \frac{1}{10}\sqrt{1 + 225 + 144} = \sqrt{\frac{1}{10}}$.	
11.	Let Q be the foot of perpendicular drawn from the points A (1, 8, 4) to the line passing	
	through B and C as shown in the Fig. 11.2. The equation of line BC by using the	
	formula, $\vec{r} = \vec{a_1} + \lambda(\vec{a_2} - \vec{a_1})$	
	Here, $\overline{a_1} = -\hat{j} + 3k$, $\overline{a_2} = 2\hat{\imath} - 3\hat{j} - k$	1
	So that equation of $BC = -\hat{j} + 3k + \lambda(2\hat{i} - 2\hat{j} - 4k)(1)$	1
	Any general point Q on line (1) is given by Q $(2\lambda, -1 - 2\lambda, 3 - 4\lambda)$ (2)	
	P(1, 8, 4) then	1
	Direction ratios of line \overrightarrow{PQ} are given by $2\lambda = 1 = 1 = 2\lambda = 8 = 3 = 4\lambda = 4$ = (2) =	
	Direction ratios of line <i>i</i> Q are given by $2\lambda = 1$, $-1 = 2\lambda = 0$, $3 = 4\lambda = 4$) = $(2\lambda = 1, -2\lambda = 9, -4\lambda = 1)$	
	Now as \overrightarrow{PO} is perpendicular to the line (1) hence we have	
	-5	
	$2.(2\lambda - 1) - 2.(-2\lambda - 9) - 4.(-4\lambda - 1) = 0 \Longrightarrow 24\lambda + 20 = 0 \Longrightarrow \lambda = \frac{-6}{6}$	1
	The required point is obtained by putting value of λ in (2) which is Q $\left(\frac{-5}{2}, \frac{2}{2}, \frac{19}{2}\right)$	1
12.	Any general point on the line $\frac{x}{z} - \frac{y-1}{z-2}$ (1)	
	Any general point on the line $\begin{pmatrix} 2 & -2 & -3 \\ 1 & 2 & -3 \\ 2 & -3 & -2 \end{pmatrix}$ (1)	
	Is given by Q $(\lambda, 1 + 2\lambda, 2 + 3\lambda)$ (2) Let P $(1, 6, 3)$ be the given point and let Q be the foot of perpendicular from point P to	
	the line (1)	
	Direction ratios of line \overrightarrow{PO} are given by $(\lambda - 1, 1 + 2\lambda - 6, 3\lambda + 2 - 3) = (\lambda - 2)$	1
	$1, 2\lambda - 5, 3\lambda - 1)$	
	Now, as \overrightarrow{PQ} is perpendicular to the line (1) hence, we have	1
	$1.(\lambda - 1) + 2.(2\lambda - 5) + 3.(3\lambda - 1) = 0$	
	$\Rightarrow 14\lambda - 14 = 0 \Rightarrow \lambda = 1$	
	Hence, co – ordinates of point Q are : Q (1, 3, 5)	
	Now, if R (x, y, z) be image point of the point P $(1, 6, 3)$ then, Q $(1, 3, 5)$ will be mid –	
	point of line – segment PR. x + 1 , $y + 6$, $z + 3$, $z = 1$	1
	So that, $\frac{3}{2} = 1, \frac{3}{2} = 3, \frac{3}{2} = 5$	
	Hence, $x = 1, y = 0, z = 7$.	

	So that image point is : $(1, 0, 7)$.	
13.	A $\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$	3
14.	R(4,3,7) or R(-2,-1,3)	3
15.	-51 -141 +192=0	3

CHAPTER-11

THREE DIMENSIONAL GEOMETRY

04 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Find the distance between the point P(6,5,9) and the plane determined by	4
	the points A(3,-1,2) ,B(5,2,4) and C(-1,-1,6)	MARKS
2.	Find the coordinates of the point where the line through the points A(3,4,1)	4
	and B(5,1,6) crosses the XY-plane.	
3.	The equation of motion of a missile are $x = 2t$, $y = 3t$, $z = t$, where the time 't' is given in seconds and distance is measured in kilometers. Based on it, answer the following question; (i) What is the path of the missile? (a) Straight line (b) Parabola (c) Circle (d) Ellipse (ii) Which of the following points lie on the path of missile? (a) $(1, 2, 3)$ (b) $(2, 3, 1)$ (c) $(4, 1, -2)$ (d) $(1, -2, 3)$ (iii) At what distance will the missile be in 10 seconds from the starting point $(0, 0, 0)$? (a) $10\sqrt{14}$ km (b) $20\sqrt{14}$ km (c) $10\sqrt{7}$ km (d) $20\sqrt{14}$ km (iv) The position of missile at a certain instant of time is $(2, -8, 15)$ then what will be height of the missile from the ground if ground is considered as xy-plane? (a) 2 km (b) 8 km (c) 15 km (d) 7 km	4
4.	In a class, teacher asks students what they know about space or three dimensional system, he asks students some basic questions. Help students to answer the following; (i) What is the equation of x-axis in space? (a) $x = 0, y = 0$ (b) $y = 0, z = 0$ (c) $x = 0$ (d) none of these (ii) What are direction ratios of y-axis? (a) $0,0,1$ (c) $0,1,0$ (b) $1,0,0$ (d) $1,0,1$ (iii) DC of a line are < m, m, m >, then (a) $m > 0$ (c) $m < 1$ (b) $m < 0$ (d) $m = \frac{1}{\sqrt{3}}$ or $\frac{-1}{\sqrt{3}}$ (iv) Which of the following statement is correct? (a) Direction ratios of two perpendicular lines are proportional. (c) Direction ratios of two parallel lines are proportional. (d) All of these are correct.	4
5.	The equation of motion of a rocket are $x = 4t$, $y = -4t$, $z = t$, where the time t is given in the seconds and the distance is measured in kilometers.	4

	(i)Find the points lie on the path of the rocket at t = 5 s. (ii) Find the distance of the rocket from the starting point (0,0,0) in 5 seconds .	
6.	Read the following text and answer the question on the basis of the same. A motor cycle race was organized in a town, where the maximum speed limit was set by the organizers . No participant are allowed to cross the specified speed limit, but two motorcycles A and B are running at the speed more than allowed speed on the road along the lines $\vec{r} = \hat{i} + 2\hat{j} - \hat{k} + \lambda(\hat{i} + 2\hat{j} - \hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} + 2\mathbf{k} + \mu(2\hat{i} + \hat{j} + \hat{k})$ (i) Find the cartesian equation of the line along which motorcycle B is running. (ii) Find the shortest distance between the lines.	4
7.	Find the shortest distance between the lines $l_1 \& l_2$ whose vector equations are given by : $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$.	4
8.	Find the distance between the lines $l_1 \& l_2$ whose vector equations are given by : $\vec{r} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ and $\vec{r} = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k} + \mu(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}).$	4
9.	Find the shortest distance between the following two lines $r \rightarrow = (1 + \lambda) \hat{1} + (2 - \lambda)\hat{j} + (\lambda + 1)\hat{k};$ $r \rightarrow = (2\hat{1} - \hat{j} - \hat{k}) + \mu(2\hat{1} + \hat{j} + 2\hat{k})$	4
10.	Find the shortest distance between the lines whose vector equations are $r \rightarrow = (1-t) \hat{1} + (t-2)\hat{j} + (3-2t)\hat{k};$ and	4

$r \rightarrow = (s+1) \hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k};$

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$3\sqrt{34}$	
	17	
2.	$\left(\frac{13}{5}, \frac{23}{5}, 0\right)$	
3.	(i) (a)	4
	(ii) (b)	
	(11) (a) (iv) (c)	
4.	(i) (b)	4
	$\begin{array}{c} (ii) (c) \\ (iii) (b) \end{array}$	
	$\begin{array}{c} (11) (d) \\ (iv) (a) \end{array}$	
5	(iv) (c) (i) The equation of motion of a rocket are $x = At$, $y = At$, $z = t$	1
5.	at t = 5	-
	x= 20, y = -20, z = 5	
	so, points lie on the path = (20,-20,5)	
	(ii) points lie on the path after 5 seconds = (20,-20,5)	
	Distance from starting point (0,0,0)	
	$=1\sqrt{400} + 400 + 251$	
	$= 1\sqrt{825}$ I	
	$=5\sqrt{33}$	
6.	(i)The line along which motorcycle B is running	4
	$\vec{r} = 3\hat{i} + 3\hat{j} + 2\mathbf{k} + \mu (2\hat{i} + \hat{j} + \mathbf{k})$	
	$(x\hat{\imath} + y\hat{\jmath} + zk) = (3+2\mu)\hat{\imath} + (3+\mu)\hat{\jmath} + (2+\mu)k$	
	$x = (3+2\mu), y = (3+\mu), z = (2+\mu)$	
	Of, $(x-5)/2 = \mu$, $y-5 = \mu$, $z-2 = \mu$ The required cartesian equation =	
	(x-3)/2 = y-3 = z-2	
	(iii) $a_1 = \hat{i} + 2\hat{j} - \hat{k}$, $a_2 = 3\hat{i} + 3\hat{j} + 2k$	
	$b_1 = \hat{i} + 2\hat{j} - \hat{k}$, $b_2 = 2\hat{i} + \hat{j} + \hat{k}$	
	$a_2 - a_1 = 3\hat{i} + 3\hat{j} + 2\hat{k} - \hat{i} - 2\hat{j} + \hat{k} = 2\hat{i} + \hat{j} + 3\hat{k}$	
	$\begin{bmatrix} i & j & k \\ 1 & 2 & 1 \end{bmatrix} = 2\hat{i} + 2\hat{j} + 2\hat{j}$	
	$D_1 \wedge D_2 - \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix} - 5i + 5j - 5k$	
	$(a_2 - a_1).(b_1 X b_2) = (2\hat{i} + \hat{j} + 3\hat{k}).(3\hat{i} + 3\hat{j} - 3\hat{k})$	
	=6+3-9	
	= 0	
	So, Shortest distance between given lines = 0.	
	Civen equation of lines are given by a	
1.	Given equation of lines are given by :	

	$\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k}) \dots \dots$	
	$r = 2l + j - k + \mu(3l - 5j + 2k)(2)$ Comparing (1) and (2) by the standard equations $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \lambda \vec{b_2}$	
	respectively, $$	1
	we get $\overrightarrow{a_1} = \hat{\imath} + \hat{\jmath}$, $\overrightarrow{b_1} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\overrightarrow{a_2} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$, $\overrightarrow{b_2} = 3\hat{\imath} - 5\hat{\jmath} + 2\hat{k}$ Therefore $\overrightarrow{a_1} = \overrightarrow{a_2} - \hat{\imath} - \hat{k}$	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	and $b_1 \times b_2 = \begin{vmatrix} 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} = 3\hat{\iota} - \hat{j} - 7\hat{k}$	1
	So, $ \vec{b_1} \times \vec{b_2} = \sqrt{9 + 1 + 4} = \sqrt{59}$	
	Hence, the shortest distance between the given lines is given by $\left[\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) - 1\left(2\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \left(\frac{1}{2}, \frac{1}{2}\right) - 10\right]$	1
	$d = \left \frac{(b_1 \times b_2) \cdot (u_2 - u_1)}{ \vec{b_1} \times \vec{b_2} } \right = \left \frac{(3i - j - 7k) \cdot (i - k)}{\sqrt{59}} \right = \frac{10}{\sqrt{59}} \text{ units.}$	
8.	The given equations of lines are:	
	$\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \dots \dots$	
	$T = 5t + 5j - 5k + \mu(2t + 5j + 6k)(2)$ Clearly, lines given in (1) and (2) are parallel.	
	Comparing (1) and (2) by the standard equations $\vec{r} = \vec{a_1} + \lambda \vec{b}$ and $\vec{r} = \vec{a_2} + \lambda \vec{b}$	
	respectively, we get $\vec{a} = \hat{i} + 2\hat{i} - 4\hat{k}$ $\vec{a} = -3\hat{i} + 3\hat{i} - 5\hat{k}$ $\vec{b} = -2\hat{i} + 3\hat{i} + 6\hat{k}$	1
	we get, $u_1 = t + 2j + k$, $u_2 = 5t + 5j + 5k$.	
	Therefore, $\overrightarrow{a_2} - \overrightarrow{a_1} = 2\hat{\iota} + \hat{j} - \hat{k}$,	
	Also, $\vec{b} \times (\vec{a_2} - \vec{a_1}) = (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) \times (2\hat{\imath} + \hat{\jmath} - \hat{k}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 6 \\ 2 & 1 & 1 \end{vmatrix} = -9\hat{\imath} + \hat{\imath}$	1
	$14\hat{j} - 4\hat{k}.$	
	Hence, the distance between the given lines is given by	2
	$d = \left \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{ \vec{b} } \right = \left \frac{-9\hat{\imath} + 14\hat{\jmath} - 4\hat{k}}{\sqrt{4 + 9 + 36}} \right = \frac{\sqrt{81 + 196 + 16}}{7}$	$\frac{3}{2}$
		$\frac{1}{2}$
	$d = \frac{\sqrt{293}}{7}$ units.	
9.	$-3\hat{i}+3\hat{k}$	4
10.	$\left \frac{-4+12}{\sqrt{20}}\right = \frac{8}{\sqrt{20}}$ units	4

CHAPTER-11 THREE DIMENSIONAL GEOMETRY 05 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	The Indian Coast Guard (ICG) while patrolling, saw a suspicious boat with four men. They were nowhere looking like fishermen. The soldiers were closely observing the movement of the boat for an opportunity to seize the boat. They observe that the boat is moving along a planar surface. At an instant of time, the coordinates of the position of coast guard helicopter and boat are (2, 3, 5) and (1, 4, 2) respectively.	5
	Based on the above information, answer the following questions.	
	 (i) If the line joining the positions of the helicopter and boat is perpendicular to the plane in which boat moves, then equation of plane is 	
	(a) $x - y + 3z = 2$ (b) $x + y + 3z = 2$	
	(c) $x - y + 3z = 3$ (d) $x + y + 3z = 3$	
	(ii) If the soldier decides to shoot the boat at given instant of time, where the distance measured in metres, then what is the distance that bullet has to travel?	
	(a) $\sqrt{5}$ m (b) $\sqrt{8}$ m	
	(c) $\sqrt{10}$ m (d) $\sqrt{11}$ m	
	(iii) If the speed of bullet is 30 m/sec, then how much time will the bullet take to hit the boat after the shot is fired?	
	(a) 30 seconds (b) 1 second	
	(c) $\frac{1}{2}$ second (d) $\frac{\sqrt{11}}{30}$ seconds	
	(iv) At the given instant of time, the equation of line passing through the positions of helicopter and boat is	
	(a) $x + y = z$ (b) $x - 1 - y - 4 - z - 2$	
	(a) $\frac{1}{1} = \frac{1}{-1} = \frac{1}{3}$ (b) $\frac{1}{1} = \frac{1}{-1} = \frac{1}{3}$	
	(c) $\frac{x}{1} = \frac{y}{1} = \frac{z}{-3}$ (d) $\frac{x-1}{1} = \frac{y-4}{1} = \frac{z+2}{-3}$	
	(v) At a different instant of time, the boat moves to a different position along the planar surface. What should	
	be the coordinates of the location of the boat for the bullet to bit the boat if soldier shorts the bullet along	
	be the coordinates of the location of the outer to fix the boar it soldier should all outer along	
	the line whose equation is $\frac{x-x}{1} = \frac{y-1}{-2} = \frac{z-z}{3}$?	
	(a) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{3}{4}, \frac{3}{2}, \frac{5}{4}\right)$ (c) $\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right)$ (d) none of these	

	? At what distances will the rocket be from the starting point O(0,0,0) and from the following line in 10 minutes ? $\vec{r} = 40\hat{i} - 10\hat{j} - 20\hat{k} + \lambda (10\hat{i} - 20\hat{j} + 10\hat{k})$	
7.	Find the Vector equation of the line passing through the point P (1, 2, -4) and perpendicular to the two lines : $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}.$	5
8.	Find the angle between the lines whose direction cosines are given by the equations : 3l + m + 5n = 0 and $6mn - 2nl + 5lm = 0$	5
9.	Show that the lines $r \rightarrow = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}); r \rightarrow = 5\hat{i} - 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$ are intersecting. Hence, find their points of intersection.	5
10.	If a variable line in two adjacent positions has direction cosines <i>l</i> , <i>m</i> , <i>n</i> and $l + \delta l$, $m + \delta m$, $n + \delta n$, show that the small angle $(\delta \theta)^2 = (\delta l)^2 + (\delta m)^2 + (\delta n)^2$.	5

ANSWERS:

Q. NO	ANSWER	MARKS
1.	1. (i) (c) : Let $P(2, 3, 5)$ and $Q(1, 4, 2)$ be the positions of helicopter and boat respectively. Now, direction ratios of PQ are proportional to 1-2, 4-3, 2-5, i.e., -1, 1, -3. So, equation of plane passing through $Q(1, 4, 2)$ and perpendicular to PQ is $-(x-1) + (y-4) + (-3)(z-2) = 0 \implies x - y + 3z = 3$ (ii) (d) : Required distance = Distance between P and Q $= \sqrt{(1-2)^2 + (4-3)^2 + (2-5)^2} = \sqrt{1+1+9} = \sqrt{11}$ m (iii) (d) : We know, Distance = Speed × Time \therefore Required time = $\frac{\sqrt{11}}{30}$ seconds	
	(iv) (b) : Equation of line PQ is $\frac{x-1}{1} = \frac{y-4}{-1} = \frac{z-2}{3}$. (v) (b) : Any point on the line $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-2}{3}$ is given by $(\lambda + 1, -2\lambda + 1, 3\lambda + 2)$. Now, on substituting this point in the equation of plane $x - y + 3z = 3$, we get $(\lambda + 1) - (-2\lambda + 1) + 3(3\lambda + 2) = 3$ $\Rightarrow \lambda + 1 + 2\lambda - 1 + 9\lambda + 6 = 3 \Rightarrow 12\lambda = -3$ $\Rightarrow \lambda = \frac{-1}{4}$ Thus, the required point is $\left(\frac{-1}{4} + 1, \frac{1}{2} + 1, \frac{-3}{4} + 2\right)$ <i>i.e.</i> , $\left(\frac{3}{4}, \frac{3}{2}, \frac{5}{4}\right)$.	
2.	2. (i) (b) : D.R's of <i>OA</i> are < 1–0, 0–0, 0–0 >, <i>i.e.</i> , < 1, 0, 0 >. (ii) (a) : Equation of diagonal <i>OB'</i> is $\frac{x-0}{1} = \frac{y-0}{2} = \frac{z-0}{3} i.e., \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ (iii) (c) : <i>OABC</i> is <i>xy</i> -plane, therefore its equation is z = 0. (iv) (c) : Plane <i>O'A'B'C'</i> is parallel to <i>xy</i> -plane passing through (0, 0, 3), therefore its equation is $z = 3$. (v) (a) : Plane <i>ABB'A'</i> is parallel to <i>yz</i> -plane passing through (1, 0, 0), therefore its equation is $x = 1$.	
3.	Let P(2, 3, 4) be the given point, L be the foot of perpendicular from 'P' to the given line AB P(2, 3, 4) A P(2, 3, 4) B The coordinates of the general point on the given line are given by: $\frac{x-0}{2} = \frac{y-2}{4} = \frac{z-4}{1} = \gamma$, where γ is a scalar Let coordinates of L be $(2\gamma, 4\gamma + 2, \gamma + 4)$ Direction ratios of PL are $2\gamma - 2, 4\gamma - 1, \gamma$ Direction ratios of given line are 2, 4, 1 which is perpendicular to PL So, $2(2\gamma - 2) + 4(4\gamma - 1) + \gamma = 0$ i.e. $\gamma = 8/21$ so coordinates of L are $(16/21, 74/21, 92/21)$	5

	let Q(a, b, c) be the image of P(2, 3, 4), then L is mid-point of PQ. a+2 16 $b+3$ 74 $c+4$ 92	
	So, $\frac{d+2}{2} = \frac{10}{21}$, $\frac{d+3}{2} = \frac{11}{21}$, $\frac{d+1}{2} = \frac{12}{21}$	
	i.e. $a = \frac{-10}{21}$, $b = \frac{35}{21}$, $c = \frac{100}{21}$	
	so, image of P in the given line is $(\frac{-10}{21}, \frac{85}{21}, \frac{100}{21})$	
	Distance of point $\left(\frac{-10}{24}, \frac{85}{24}, \frac{100}{24}\right)$ from origin is 6.27 approximately using distance	
	formula.	
4.	The equations of two given straight lines in Cartesian form are:	5
	$\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ (i) and $\frac{x-1}{0} = \frac{y-1}{3} = \frac{z}{2}$ (ii)	
	Lines are not parallel as direction ratios are not proportional. Let P and Q be the points	
	on the straight lines (i) and (ii) respectively such that PQ is perpendicular to both of the	
	Let the coordinates of P be $(2\nu, 3\nu, 4\nu)$ and O be $(1, 3\beta + 1, 2\beta)$ where β and ν are	
	scalars	
	Then the direction ratios of the line PQ will be $(2\gamma - 1, 3\gamma - 3\beta - 1, 4\gamma - 2\beta)$	
	Since, PQ is perpendicular to both (i) and (ii), so 2(2n-1) + 2(2n-2n-1) + A(4n-2n) = 0 (iii)	
	$3(3\gamma - 3\beta - 1) + 2(4\gamma - 2\beta) = 0 \qquad \dots \dots (in)$	
	Solving (iii) and (iv) we get, $\gamma = \frac{7}{2}$, $\beta = \frac{-1}{2}$	
	Hence coordinates of P are $(\frac{14}{21}, \frac{21}{28}, \frac{28}{28})$ and O are $(1, \frac{129}{27}, \frac{-2}{27})$	
	The required shortest distance can be found by distance formula	
	The required shortest distance can be round by distance formula.	
5.	The given lines are non-parallel lines. There is a unique line segment PQ which is at	5
	right angles to both the lines.	
	Hence, shortest distance between the snakes = PQ The position vector of P lying on the line $\vec{r} = 2\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{i} + 2\hat{k})$	
	is $(3+\lambda)\hat{i} + (2-2\lambda)\hat{i} + (3+2\lambda)\hat{k}$ for some λ	
	The position vector of Q lying on the line $\vec{r} = -4\hat{i} - 2\hat{k} + \mu (3\hat{i} - 2\hat{i} - 2\hat{k})$	
	is $(-4+3\mu)\hat{\imath} - 2\mu\hat{\jmath} + (-2-2\mu)\hat{k}$ for some μ	
	$\overrightarrow{PQ} = (-7+3\mu - \lambda) \hat{i} - (-2-2\mu + 2\lambda)\hat{j} + (-2-2\mu - 3 - 2\lambda)\hat{k}$	
	Since, Pq is perpendicular to both the lines.	
	$50, (-7+3\mu - \lambda) - (-2-2\mu + 2\lambda)(-2) + (-2-2\mu - 3 - 2\lambda)(2 = 0$ -7+3\mu - \lambda - 4\mu + 4\lambda - 10 - 4\mu - 4\rangle = 0	
	$-\lambda - 5\mu = 21$ (i)	
	$(-7+3\mu - \lambda)3 - (-2-2\mu + 2\lambda)(-2) + (-2-2\mu - 3 - 2\lambda)(-2) = 0$	
	$-21 + 9\mu - 3\lambda - 4 - 4\mu + 4\lambda + 10 + 4\mu + 4\lambda = 0$	
	$5\lambda + 9\mu = 15$ (ii) Solving coup (i) and (ii)	
	$\lambda = 33/2 \text{ and } \mu = -15/2$	
	The position vector of the points at which they should be so that the distance	
	between them is the shortest are	
	$(39\hat{\imath} - 62\hat{\jmath} + 70k)/2$ and $(-53\hat{\imath} + 30\hat{\jmath} + 26k)/2$	
	$PQ = (-92\hat{\imath} + 92\hat{\jmath} + 44k)/2 = (-46\hat{\imath} + 46\hat{\jmath} + 22k)$	
	The shortest distance = $PQI = \sqrt{2116} + 2116 + 484 = \sqrt{4716}$	
 6	$= 2\sqrt{11/9}$ Unit	5
0.	$v_{-} = -z_{1}, y_{-} = -z_{$	
	· · · / II - / · ·	1

	So, $x/4 = y/-4 = z/-2$	
	Direction Ratios are 4,-4,-2	
	When t = 10 seconds, the airplane will be at the points (40,-40,-20)	
	Distance from the origin in 10 minutes = $\sqrt{1600 + 1600 + 400}$	
	$=\sqrt{3600}=60$ km	
	Distance of the point (40,-40,-20) from the given line	
	= I (a2- a1)XĎI/I ĎI	
	= I -30 \hat{j} X (($10\hat{i}$ -20 \hat{j} +10 \hat{k})I/I($10\hat{i}$ -20 \hat{j} +10 \hat{k})I	
	= -300 \hat{i} + 300 \hat{k} / (10 \hat{i} -20 \hat{j} +10 \hat{k})	
	$=300\sqrt{2}/10\sqrt{6} = 10\sqrt{3}$ km	
7.	Let, the direction ratios of the line be (a, b, c) then the equation of the line will be $\vec{r} =$	1
	$\hat{i} + 2\hat{j} - 4\hat{k} + (a\hat{i} + b\hat{j} + c\hat{k})$ (i)	
	Equations of the given lines are : $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.	
	Line given in equation (i) is perpendicular to these lines so that	1
	3a - 16b + 7c = 0 & 3a + 8b - 5c = 0.	1
	Solving above by cross – multiplication method we get,	
	$\frac{a}{22} = \frac{b}{24} = \frac{c}{24}$	1
	80 - 56 21 + 15 24 + 48	
	a b c	
	$\frac{1}{24} = \frac{1}{36} = \frac{1}{72} = k(let)$	1
		1
	Hence, $a = 2k, b = 3k$, $c = 6k$	
	So that required vector equation of line is: $\vec{x} = \hat{x} + 2\hat{x} - 4\hat{y} + (2\hat{x} + 2\hat{y} + (\hat{y}))$	
	r = l + 2j - 4k + (2l + 3j + 6k).	1
8.	The relation between direction – cosines are given by $2l + m + 5m = 0$ (1)	
	$5l + lll + 5ll = 0 \dots (1)$ $6mn - 2nl + 5lm = 0 \dots (2)$	
	From. (1) we get, $m = -3l - 5n$ (3)	1
	Putting this value in (2) we get, $6(-3l - 5n)n - 2nl + 5l(-3l - 5n) = 0$	
	$\Rightarrow l^2 + 3ln + 2n^2 = 0 \Rightarrow (l+n). (l+2n) = 0$	2
	$\Rightarrow l = -n \text{ or } l = -2n$	
	Now, if $l = -n$, then $m = -2n$ using (3)	1
	and if $l = -2n$, then $m = n$. Using (3) Thus the direction ratios of two lines are proportional to $-n -2n$ n and $-2n$ n n i.e.	1
	1 2 -1 and -2 1 1	
	Hence angle between these lines are given by $\cos \theta = \frac{1 \times (-2) + 2 \times 1 + (-1) \times 1}{1 - \frac{-1}{1 - \frac{1}{1 - \frac{1}$	
	Thence, angle between these times are given by $\cos \theta = \frac{1}{\sqrt{1+4+1} \times \sqrt{4+1+1}} = \frac{1}{6}$	1
	$\Rightarrow \theta = \cos^{-1}(\frac{-1}{6}).$	
9.	$ -3+6 3\sqrt{2} $	5
	$ 3\sqrt{2} - 2 $	
10.	$(\delta\theta)^2 = (\delta l)^2 + (\delta m)^2 + (\delta n)^2$	5

As Per Revised CBSE Curriculum 2023-24

Classroom Teaching & Animated Videos Playlists

We take immense pleasure in serving you. Now, revel in our seamless online services completely free of charge. view our animated and classroom teaching Playlists customized for students from grade 1 to 12,Covering a wide range of subjects to enhance your comprehension and knowledge. Simply click on the provided playlist links to access **Playlists based on the latest NCERT Syllabus for 2023-24.**

content includes **Competency-Based** Our Questions, Assertion-Reason Questions, Previous Year Questions (PYQ), and Study-Based Questions to enhance your Case learning experience. For the most up-to-date videos, consider subscribing to our YouTube channel at https://www.youtube.com/@PrincipalsHandbookandDiaryadditionall y, you're encouraged to join our expanding WhatsApp community group to stay updated with the latest curriculum-related content and updates.

Nageen Group of Schools

We are committed to enriching your educational journey!!!

ANIMATED & CLASSROM TEACHING VIDEOS PLAYLISTS

(As per revised CBSE Curriculum- 2023-24)

ANIMATED VIDEOSPLAYLISTS (CLASS	51)		
Class 1 EVS(EnglishLanguage)(CBSE)	Click here for playlist		
Class 1 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 1 EVS (HindiLanguage)(CBSE)	Click here for Playlist		
Class 1 Mathematics(Hindi Language)(CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 2)		
Class 2 EVS (EnglishLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 2 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 2 EVS(HindiLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 2 Mathematics (Hindi Language)(CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 3)		
Class 3 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 3 EVS (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 3 EVS (HindiLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 3 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 4)		
Class 4 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 4 EVS(EnglishLanguage)(CBSE)	Click here for Playlist		
Class 4 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist		
Class 4 EVS (HindiLanguage)(CBSE)	Click here for Playlist		
CLASSROOM TEACHING VIDEOS PLAYLISTS	(CLASS 4)		
Class 4 General Science (CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS 5)			
Class 5 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 5 Science (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 5 Mathematics(HindiLanguage)(CBSE)	Click here for Playlist		
Class 5 Science (HindiLanguage)(CBSE)	<u>Click here for Playlist</u>		
CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 5)			
Class 5 General Science (CBSE)	Click here for Playlist		
Class 5 EVS (CBSE)	Click here for Playlist		

ANIMATED VIDEOS PLAYLIS	STS(CLASS 6)		
Class 6 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 6 Social Science (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 6 Science (EnglishLanguage) (CBSE)	Click here for Playlist		
Class 6 Mathematics (Hindi Language)(CBSE)	Click here for Playlist		
Class 6 Science All Chapters (CBSE)	Click here for Playlist		
CLASSROOM TEACHING VIDEOS P	LAYLISTS (CLASS 6)		
Class 6 Mathematics (CBSE)	Click here for Playlist		
Class 6 Social Science (CBSE)	Click here for Playlist		
Class 6 Sanskrit (CBSE)	Click here for Playlist		
Class 6 Hindi (CBSE)	Click here for Playlist		
Class 6 Science (CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLIS	IS (CLASS /)		
Class 7 Science(CBSE)	Click here for Playlist		
Class 7 Mathematics(CBSE)	Click here for Playlist		
Class 7 Social Science(CBSE)	Click here for Playlist		
Class 7 Mathematics(CBSE)	<u>Click here for Playlist</u>		
Class 7 Science (CBSE)	<u>Click here for Playlist</u>		
CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 7)			
	Click here for Playlist		
Class 7 Hindi (CBSE)	Click here for Playlist		
Class / Sanskrit (CBSE)	Click here for Playlist		
	Click here for Playlist		
Class 7 Mathematics (CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLIS	TS (CLASS 8)		
Class 8 Science(CBSE)	Click here for Playlist		
Class 8 Mathematics(CBSE)	Click here for Playlist		
Class 8 Social Science(CBSE)	Click here for Playlist		
Class 8 Mathematics(CBSE)	Click here for Playlist		
Class 8 Science(CBSE)	Click here for Playlist		
CLASSKOUIVI TEACHING VIDEOS P	LAYLISTS (CLASS 8)		
Class 8 Hindi (CBSE)	Click here for Playlist		
Class 8 Sanskrit (CBSE)	Click here for Playlist		
ΑΝΙΜΑΤΕΟ VIDEOS ΡΙ ΔΥΙ ΙS	TS (CLASS 9)		
Class 9 Biology(CBSE)	Click here for Playlist		
Class 9 Dividgy(CDSE)	Click here for Playlist		
Class 9 Filysics(CDSE)	Click here for Disulist		
	Click here for Playlist		
Class 3 Social Science (CDSE)	Click here for Playlist		

Class 9 Mathematics (CBSE)	Click here for Playlist
Class 9 Science (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 9)		
Class 9 Social Science (CBSE)	Click here for Playlist	
Class 9 Mathematics(CBSE)	Click here for Playlist	
Class 9 English (CBSE)	Click here for Playlist	
Class 9 Hindi (CBSE)	<u>Click here for Playlist</u>	

ANIMATED	VIDEOS	PLAYLISTS	(CLASS 2	10)
				1

Class 10 Biology (CBSE)	<u>Click here for Playlist</u>
Class 10 Physics (CBSE)	Click here for Playlist
Class 10 Chemistry (CBSE)	Click here for Playlist
Class 10 Social Science (CBSE)	Click here for Playlist
Class 10 Mathematics(CBSE) (English Language)	Click here for Playlist
Class 10 Mathematics(CBSE) (Hindi Language)	Click here for Playlist
Class 10 Science(CBSE) (Hindi Language)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 10)		
Class 10 English (CBSE)	Click here for Playlist	
Class 10 Hindi (CBSE)	Click here for Playlist	
Class 10 Mathematics (CBSE)	Click here for Playlist	
Class 10 Social Science (CBSE)	Click here for Playlist	
Class 10 Magical Science Board Exam Preparation in 1 min (CBSE)	Click here for Playlist	
Class 10: Science (CBSE)	Click here for Playlist	

ANIMATED VIDEOS PLAYLISTS (CLASS 11)		
Class 11 Physics (CBSE) (English Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (English Language)	Click here for Playlist	
Class 11 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 11 Accountancy (CBSE) (English Language)	Click here for Playlist	
Class 11 Business Studies (CBSE) (English Language)	Click here for Playlist	
Class 11 Statistics (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Mathematics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Physics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (Hindi Language)	Click here for Playlist	
Class 11Micro Economy (CBSE) (English Language)	Click here for Playlist	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 11)		
Class 11Mathematics (CBSE)	Click here for Playlist	
Class 11 Accounts (CBSE)	Click here for Playlist	
Class 11 Business Studies (CBSE) Click here for Playlist		

Class 11 Hindi (CBSE)	Click here for Playlist
Class 11 Psychology (CBSE)	Click here for Playlist
Class 11 Economics (CBSE)	Click here for Playlist
Class 11 Physics (CBSE)	Click here for Playlist
Class 11 Chemistry (CBSE)	Click here for Playlist
Class 11 English (CBSE)	Click here for Playlist
Class 11 Biology (CBSE)	Click here for Playlist
Class 11 Biology Shorts (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS (CLASS 12)

Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	<u>Click here for Playlist</u>
Class 12 Biology(CBSE)	<u>Click here for Playlist</u>
Class 12 Macro Economy (CBSE)	<u>Click here for Playlist</u>
Class 12Economic (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Accountancy (CBSE)	<u>Click here for Playlist</u>
Class 12 Business Studies (CBSE)	<u>Click here for Playlist</u>
Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 12)	
Class 12 CHEMISTRY (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	Click here for Playlist
Class 12 Hindi (CBSE)	Click here for Playlist
NEET Biology in 1 min	Click here for Playlist
Class 12 History (CBSE)	Click here for Playlist
Class 12 Political Science (CBSE)	Click here for Playlist
Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 : Accounts (CBSE)	Click here for Playlist

SCHOOL OF EDUCATORS

You will get Pre- Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here .Join Your Subject WhatsApp Group.

Rules & Regulations of the Group

- 1. No introduction
- 2. No Good Morning/Any wish type message
- 3.No personal Chats & Messages
- 4. No Spam
- 5. You can also ask your difficulties here.

Just get learning resources & post learning resources. Helpline number only WhatsApp: +91-95208-77777

Julearn /

Why Artham Resource Material?

Resource materials for teachers and students are essential tools for effective teaching and learning. They provide valuable information, guidance, and support to both teachers and students, making the teaching and learning process more efficient and productive.

For teachers, Artham resource materials include lesson plans, instructional guides, assessment tools, professional development materials, and teaching aids. These materials are well researched and created according to 2023-24 NEP and NCERT guidelines.

For students, resource materials can include textbooks, study guides, homework assignments, reference books, online learning platforms, and educational videos. These materials can be obtained from school libraries, educational publishers, online resources, and teachers.

Both teachers and students can also benefit from Artham educational resources which are free and openly licensed educational materials that can be used and shared for teaching and learning. Artham resource material include textbooks, courses, lesson plans, and multimedia resources that are available online.

In summary, resource materials are critical components of effective teaching and learning. They provide a wealth of information and support that can enhance the quality of education and help students achieve academic success.

Teachers and students can also purchase these resources from the links provided with every resource.

JOIN TELEGRAM GROUP/CHANNELS FOR CLASS WISE HIGH QUALITY RESOURCE MATERIAL

SOE CBSE Groups

- <u>Click to Join CBSE Group...All classes</u>
- <u>Click to Join SOE CBSE Kindergarten Group</u>
- <u>Click to Join SOE CBSE Class 1 Group</u>
- <u>Click to Join SOE CBSE Class 2 Group</u>
- Click to Join SOE CBSE Class 3 Group
- Click to Join SOE CBSE Class 4 Group
- Click to Join SOE CBSE Class 5 Group
- Click to Join SOE CBSE Class 6 Group
- Click to Join SOE CBSE Class 7 Group
- Click to Join SOE CBSE Class 8 Group
- Click to Join SOE CBSE Class 9 Group
- <u>Click to Join SOE CBSE Class 10 Group</u>
- Click to Join SOE CBSE Class 11 (Science) Group
- <u>Click to Join SOE CBSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE CBSE Class 12 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 12(Commerce) Group</u>

- <u>Click to Join SOE CBSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>
- <u>Click to Join SOE CBSE Project File Group for Class 9th to 12th All Subjects</u>

SOE ICSE Groups

- <u>Click to Join SOE ICSE Kindergarten Group</u>
- <u>Click to Join SOE ICSE Class 1 Group</u>
- <u>Click to Join SOE ICSE Class 2 Group</u>
- <u>Click to Join SOE ICSE Class 3 Group</u>
- <u>Click to Join SOE ICSE Class 4 Group</u>
- <u>Click to Join SOE ICSE Class 5 Group</u>
- Click to Join SOE ICSE Class 6 Group
- <u>Click to Join SOE ICSE Class 7 Group</u>
- <u>Click to Join SOE ICSE Class 8 Group</u>
- <u>Click to Join SOE ICSE Class 9 Group</u>
- Click to Join SOE ICSE Class 10 Group
- <u>Click to Join SOE ICSE Class 11 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 12(Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>

Nageen CBSE Channels

- <u>Click to Join Nageen CBSE Kindergarten Channel</u>
- <u>Click to Join Nageen CBSE Class 1 Channel</u>
- <u>Click to Join Nageen CBSE Class 2 Channel</u>
- <u>Click to Join Nageen CBSE Class 3 Channel</u>
- <u>Click to Join Nageen CBSE Class 4 Channel</u>
- Click to Join Nageen CBSE Class 5 Channel
- Click to Join Nageen CBSE Class 6 Channel
- Click to Join Nageen CBSE Class 7 Channel
- Click to Join Nageen CBSE Class 8 Channel
- Click to Join Nageen CBSE Class 9 Channel
- Click to Join Nageen CBSE Class 10 Channel
- Click to Join Nageen CBSE Class 11 (Science) Channel
- Click to Join Nageen CBSE Class 11 (Humanities) Channel
- Click to Join Nageen CBSE Class 11 (Commerce) Channel
- Click to Join Nageen CBSE Class 12 (Science) Channel
- <u>Click to Join Nageen CBSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen CBSE Class 12 (Humanities) Channel</u>

- Click to Join JEE/NEET Channel
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>

Nageen ICSE Channels

- <u>Click to Join Nageen ICSE Kindergarten Channel</u>
- <u>Click to Join Nageen ICSE Class 1 Channel</u>
- <u>Click to Join Nageen ICSE Class 2 Channel</u>
- <u>Click to Join Nageen ICSE Class 3 Channel</u>
- <u>Click to Join Nageen ICSE Class 4 Channel</u>
- <u>Click to Join Nageen ICSE Class 5 Channel</u>
- <u>Click to Join Nageen ICSE Class 6 Channel</u>
- <u>Click to Join Nageen ICSE Class 7 Channel</u>
- <u>Click to Join Nageen ICSE Class 8 Channel</u>
- <u>Click to Join Nageen ICSE Class 9 Channel</u>
- <u>Click to Join Nageen ICSE Class 10 Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Humanities) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Humanities) Channel</u>
- <u>Click to Join JEE/NEET Channel</u>
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>